Holybro
Holybro ShopPX4 GuideArdupilot WikiContact Us
  • Welcome
  • Flight Controller
    • Pixhawk 6X
      • Overview
      • Technical Specification
      • Sample Wiring Diagram
      • Pixhawk Baseboards
      • Dimensions
        • Rev 8 (Current)
        • Rev 3 & 4
      • PX4 & Ardupilot Guide
      • Supported Firmware
      • Using Analog PM
      • Pixhawk Autopilot FMUv6X Standard
      • Download
    • Pixhawk 6X Pro
      • Overview
      • Technical Specification
      • Sample Wiring Diagram
      • Pixhawk Baseboards
      • Dimensions
      • PX4 & Ardupilot Guide
      • Supported Firmware
      • Using Analog PM
      • Pixhawk Autopilot FMUv6X Standard
      • Download
    • Pixhawk Baseboards
      • Pixhawk Baseboard v1 Ports
      • Pixhawk Baseboard v2 Ports
        • PWM Signal Voltage MOD
      • Pixhawk Baseboard V2 Mounting Plate Dimensions
      • Pixhawk Mini Baseboard Ports
      • Pixhawk Jetson Baseboard
        • Overview & Specification
        • Ports Pinout
        • Wiring & Block Diagram
        • Dimension & Weight
        • Flashing guide
        • CAN setup
        • CSI Camera setup
        • MAVLINK Bridge
        • Reference Links
      • Pixhawk RPi CM4 Baseboard
        • Overview
        • Connections & Ports
        • RPi CM4 Flash Guide
        • Dimension
        • Ethernet Connection
        • PM03D - RPi CM4 Base Wiring Guide
        • Installation of RPi CM4
        • Supported Firmware
      • Baseboard Changelog
      • Download
    • Pixhawk 6C
      • Overview
      • Technical Specification
      • Pixhawk 6C Ports
      • Sample Wiring Diagram
      • Dimensions
      • System Diagram & Pinout
      • PX4 & Ardupilot Guide
      • PWM Signal Voltage MOD
      • Supported Firmware
      • Download
    • Pixhawk 6C Mini
      • Overview
      • Technical Specification
      • Pixhawk 6C Mini Ports
      • Dimensions
      • System Diagram & Pinout
      • PWM Signal Voltage MOD
      • Supported Firmware
      • Pixhawk 6C Mini Difference
      • Download
    • Pix32 v6
      • Overview
      • Technical Specification
      • Pix32 v6 Baseboard Ports
      • Pix32 v6 Mini-Base Ports
      • Dimensions
      • System Diagram & Pinout
      • Supported Firmware
      • Download
    • Durandal
      • Overview & Technical Specification
      • Dimensions
      • Durandal Pinout
      • Supported Firmware
    • Kakute H7 (v1/v2/Mini)
      • Kakute H7 v1
        • Overview
        • Wiring Diagram
        • Pinout
        • Supported Firmware
      • Kakute H7 v2
        • Overview
        • Wiring Diagram
        • Pinout
        • Supported Firmware
          • INAV VTX+ & Bluetooth Setup
      • Kakute H7 Mini
        • Overview
        • Sample Wiring Diagram
        • Pinout
        • Supported Firmware
      • Kakute H7 Version Difference
      • Download
    • Kakute H743-Wing
      • Overview
      • Pinout
      • Sample Wiring Diagram
      • Power Monitor & Scale
      • Camera & ON/OFF Pit Switch
      • Ardupilot Mapping
      • Ardupilot Wiki
      • INAV Mapping
      • Supported Firmware
    • Kakute F405 Wing Mini
      • Overview
      • Pinout
      • Sample Wiring Diagram
      • Power Monitor & Scale
      • Supported Firmware
    • Autopilot Comparison
  • GPS & RTK System
    • H-RTK NEO-F9P Series (RM3100 Compass)
      • Overview
      • Specification
      • NEO-F9P Module Pinout
      • NEO-F9P Rover Pinout
      • Dimensions
      • Downloads
      • Setup & Getting Started
      • Firmware Upgrade
      • GPS Heading/Yaw (aka Moving Baseline)
      • Setup guide for Multiple Aircraft
      • Portable RTK Base Station Setup
      • CAN Termination Resistance Software Toggle
    • H-RTK ZED-F9P Series (RM3100 Compass)
      • Overview
      • Specification
      • Dimension
      • Pinout
      • Download
      • Setup & Getting Started (Ardupilot)
      • Setup & Getting Started (PX4)
      • Using with Cube Autopilot
      • u-blox F9P Firmware Upgrade
      • DroneCAN FW Upgrade
      • GPS Heading/Yaw (aka Moving Baseline)
      • Setup guide for Multiple Aircraft
      • Portable RTK Base Station Setup
      • Galileo OSNMA Support
      • Changelog
      • CAN Termination Resistance Software Toggle
    • H-RTK ZED-F9P Series (IST8310/BMM150 Compass)
      • DroneCAN F9P
        • Overview
        • Specification
        • Pinout
        • Dimension
        • Setup & Getting Started
        • DroneCAN FW Upgrade
        • Download
        • CAN Termination Resistance Software Toggle
      • Standard F9P (UART)
        • Overview
        • F9P Rover Lite
        • F9P Helical
        • F9P Base
        • H-RTK with Cube Autopilot
        • Specification & Comparison
        • Setup & Getting Started
        • Dimension
        • Pinout
        • Download
      • u-blox F9P Firmware Upgrade
      • GPS Heading/Yaw (aka Moving Baseline)
      • Setup guide for Multiple Aircraft
      • Ardupilot IST8310 Compass Orientation
      • Portable RTK Base Station Setup
      • Galileo OSNMA Support
    • H-RTK Unicore UM982
      • Overview
      • Specification
      • Pinout
      • Dimension
      • LED Indicator
      • Setup & Getting Started (Ardupilot)
      • Setup & Getting Started (PX4)
      • Advanced Application (Unicore Uprecise)
      • Factory Setting and COM Port Allocation
      • Firmware Support
      • Download
    • H-RTK mosaic-H
      • Overview & Specification
      • Setup & Getting Started (Ardupilot)
      • Setup & Getting Started (PX4)
      • Pinout
      • Dimension
      • Advanced Application
      • GPS LED Meaning
      • Septentrio PPK application
      • Septentrio receiver control and analysis software
      • Supported Firmware
      • Download
    • M8N/M9N/M10 GPS
      • Standard M10/M9N/M8N GPS
        • Overview
        • Pinout
        • Dimension
        • Download
      • Micro M10/M9N GPS
        • Overview
        • Pinout
        • Dimension
        • Download
      • DroneCAN M9N/M8N
        • Overview
        • Pinout
        • Dimension
        • DroneCAN GPS Setup Guide
        • DroneCAN FW Upgrade
        • CAN Termination Resistance Software Toggle
        • About DroneCAN
        • Downloads
      • Ardupilot IST8310 Compass Orientation
      • Downloads
    • GPS LED & Buzzer
      • GPS LED & Buzzer Meaning
      • Status LED Changes
  • Peripherals
    • DLVR Airspeed (DroneCAN)
      • Overview
      • Quick Start Guide
      • CAN Termination Resistance Software Toggle
      • Download
    • MS4525DO & MS5525DSO I2C Airspeed Sensor
    • RM3100 Compass (DroneCAN)
      • RM3100 Setup Guide
      • CAN Termination Resistance Software Toggle
    • H-Flow (DroneCAN)
      • Overview
      • Setup Guide
      • Firmware
      • Dimensions
      • Pinout
      • CAN Termination Resistance Software Toggle
      • Downloads
  • PMW3901 Optical Flow Sensor
  • CAN Termination Resistance Software Toggle
  • Radio
    • Remote ID
      • Overview & Spec
      • Setup & Configuration
      • Pinout
      • Firmware Support
      • Firmware Update
      • Download
    • SiK Telemetry Radio V3
      • LED and Connection
      • Multiple Point to Point Setup with Sik Radio
        • Downloads
      • RF Transmission Power Setting For 1W Variants
      • Flight Controller setup
      • Dimension & Pinout
      • Downloads
    • Microhard Radio
      • Overview
      • Specification
      • Ports & Buttons
      • Status LED
      • Default Setting
      • Pinout
      • Dimension
      • Enabling RTS / CTS Flow Control
      • Point-to-Multipoint Setup with Microhard Radio
      • Download
    • XBP9X Radio
      • Specification
      • Power
      • Status LEDs
      • Antenna
      • Pinout
      • Dimension
      • Point-to-Multipoint Setup with XBee Radio
      • Download
  • Drone Development Kit
    • X650 Development Kit
      • NeoPixel WS2812 LED Setup Instruction
      • Download
    • PX4 Development Kit - X500v2
      • Getting Started Build Guide
      • Download
    • PX4 Vision Dev Kit v1.5
      • Overview
      • Wiring Diagram
      • v1 & v1.5 Difference
      • Up-Core Carrier Board Pinout
      • PX4 User Guide
      • Downloads
    • S500 Frame Kit
  • Power Module & PDB
    • Power Module
      • DroneCAN Power Module Setup
      • Analog Power Module Setup
      • Digital Power Module (PM) Setup
      • PM07 Quick Start Guide
      • Using Analog PM with Pixhawk 5X/6X
      • Connector & Wire Rating
      • Download
    • Power Module Comparison
  • UBEC
  • ESC
    • ESC Current Sensor Scale
    • AM32 ESC - Reverse Motor Direction Instruction
    • How To Flash AM32 Firmware To HOLYBRO BLHeli ESCs
  • ESC 3D File Downloads
  • Company
    • About Us
    • Holybro Logo
    • Certification (ISO, FCC, CE, RoHS, etc):
    • User Manuals
      • Kakute Flight Controller
      • ESC
      • Kopis
      • Autopilot Flight Controller
      • Drone Dev Kit
      • Other
Powered by GitBook

© 2024 Holybro. All rights reserved.

On this page
  • Getting started
  • Preparation
  • Connection Diagram
  • Flight controller Setting with PX4 Firmware
  • RTK GPS settings
  • Flight Controller Setup
  • Tuning
  • RTK Connection Process

Was this helpful?

Export as PDF
  1. GPS & RTK System
  2. H-RTK ZED-F9P Series (RM3100 Compass)

Setup & Getting Started (PX4)

User Guide

PreviousSetup & Getting Started (Ardupilot)NextUsing with Cube Autopilot

Last updated 10 months ago

Was this helpful?

Getting started

In this section of the manual, we will cover the basic setup of the units. To setup the RTK units with PX4, you will need QGroundControl installed on your computer or Ground Control Station and PX4 installed on your flight controller. If you are using Ardupilot firmware and Mission Planner ground station software, please refer the . Using RTK (Real Time Kinematics) greatly increases the accuracy of the GPS positioning. RTK mode requires a base station and a rover station. Either Rover or Helical can be use a rover station. The Helical or the "Base" model, we recommend using the "Base" model should be used as base station since it allows a larger external antenna.

More information can be found in

Preparation

To use the H-RTK on a drone, you need the following hardware:

  • A flight controller with CAN port for the GPS, a free serial port for the radio telemetry. A Holybro Pixhawk 4 or newer is recommended. This example uses a Pixhawk 6C.

  • A pair of radio telemetry radios for data transmission, this example uses Holybro Sik Telemetry Radio V3

  • A H-RTK Rover or Helical (UAV side)

  • A H-RTK Helical or Base Station H-RTK F9P (base station side)

  • Ground Station (Ex: Tablet, Laptop, GCS, etc.)

Connection Diagram

Refer to if you are using Multiple Aircraft.

Connect the devices as follow:

Before you start the setup, make sure both RTK units have a good view of the sky so they can receive the best signal from the satellites.

Flight controller Setting with PX4 Firmware

If you are using DroneCAN version, make sure The firmware used for flight control is PX4 V1.12.3 or higher, which automatically allocate 2 node ID for DroneCAN. Older firmware might not be able to automatically allocate 2 node ID. You will need to use newer firmware and perform following operation to manually assigning node ID. Connect the GPS to the flight controller.

RTK GPS settings

These settings define the minimum duration and minimum accuracy for completing the RTK GPS setup process (known as "Survey-In").

TIP: You can save and reuse a base position to save time: perform Survey-In once, select Use Specified Base Position and press Save Current Base Position to copy in the values for the last survey. The values will then persist across QGC reboots until they are changed.

Flight Controller Setup

MAVLink2

The MAVLink2 protocol must be used because it makes more efficient use of lower-bandwidth channels. This should be enabled by default on recent builds. Holybro SiK Telemetry Radio uses MAVLink2 protocol by default. But if you are not sure about the status of the data transmission, you can go through the following steps to ensure MAVLink2 is used:

Update the telemetry module firmware to the latest version

Tuning

RTK Connection Process

The RTK GPS connection is essentially plug and play:

1.) Start QGroundControl and attach the base RTK GPS via USB to the ground station. The device is recognized automatically.

2.) Start the vehicle and make sure it is connected to QGroundControl.

QGroundControl displays an RTK GPS status icon in the top icon bar while an RTK GPS device is connected (in addition to the normal GPS status icon). The icon is red while RTK is being set up, and then changes to white once RTK GPS is active. You can click the icon to see the current state and RTK accuracy.

3.) QGroundControl then starts the RTK setup process (known as "Survey-In").

You can track the progress by clicking the RTK GPS status icon.

Once Survey-in completes, the RTK GPS icon changes to white and QGroundControl starts to stream position data to the vehicle.

Vehicle GPS switches to RTK mode. The new mode is displayed in the normal GPS status icon.

Tip: The Orange RTK FIX led on F9P module will blink when receiving RTCM data. And the led will stay on when the Rover module has entered the RTK status.

If you are using DroneCAN version, connect the flight controller to QGC and Make sure the parameter has been set to "Sensor Automatic Config". The DroneCAN-F9P will now work.

The RTK GPS settings are specified in the QGroundControl (Settings View > General Settings > RTK GPS).

The parameter needs to be set to Enabled.

Set to 2

You may also need to tune some parameters of the flight controller as the default parameters are tuned assuming a GPS accuracy in the order of meters, not centimeters. For example, you can decrease and to 0.2.

Survey-In is a startup procedure to get an accurate position estimate of the base station. The process typically takes several minutes (it ends after reaching the minimum time and accuracy specified in the ).

UAVCAN_ENABLE
General Settings (opens new window)
MAV_PROTO_VER
EKF2_GPS_V_NOISE
EKF2_GPS_P_NOISE
RTK settings
Ardupilot setup guide
PX4 Doc on RTK GPS
these Setup Guide
UAVCAN_PUB_RTCM