Holybro
Holybro ShopPX4 GuideArdupilot WikiContact Us
  • Welcome
  • Flight Controller
    • Pixhawk 6X
      • Overview
      • Technical Specification
      • Sample Wiring Diagram
      • Pixhawk Baseboards
      • Dimensions
        • Rev 8 (Current)
        • Rev 3 & 4
      • PX4 & Ardupilot Guide
      • Supported Firmware
      • Using Analog PM
      • Pixhawk Autopilot FMUv6X Standard
      • Download
    • Pixhawk 6X Pro
      • Overview
      • Technical Specification
      • Sample Wiring Diagram
      • Pixhawk Baseboards
      • Dimensions
      • PX4 & Ardupilot Guide
      • Supported Firmware
      • Using Analog PM
      • Pixhawk Autopilot FMUv6X Standard
      • Download
    • Pixhawk Baseboards
      • Pixhawk Baseboard v1 Ports
      • Pixhawk Baseboard v2 Ports
        • PWM Signal Voltage MOD
      • Pixhawk Baseboard V2 Mounting Plate Dimensions
      • Pixhawk Mini Baseboard Ports
      • Pixhawk Jetson Baseboard
        • Overview & Specification
        • Ports Pinout
        • Wiring & Block Diagram
        • Dimension & Weight
        • Flashing guide
        • CAN setup
        • CSI Camera setup
        • MAVLINK Bridge
        • Reference Links
      • Pixhawk RPi CM4 Baseboard
        • Overview
        • Connections & Ports
        • RPi CM4 Flash Guide
        • Dimension
        • Ethernet Connection
        • PM03D - RPi CM4 Base Wiring Guide
        • Installation of RPi CM4
        • Supported Firmware
      • Baseboard Changelog
      • Download
    • Pixhawk 6C
      • Overview
      • Technical Specification
      • Pixhawk 6C Ports
      • Sample Wiring Diagram
      • Dimensions
      • System Diagram & Pinout
      • PX4 & Ardupilot Guide
      • PWM Signal Voltage MOD
      • Supported Firmware
      • Download
    • Pixhawk 6C Mini
      • Overview
      • Technical Specification
      • Pixhawk 6C Mini Ports
      • Dimensions
      • System Diagram & Pinout
      • PWM Signal Voltage MOD
      • Supported Firmware
      • Pixhawk 6C Mini Difference
      • Download
    • Pix32 v6
      • Overview
      • Technical Specification
      • Pix32 v6 Baseboard Ports
      • Pix32 v6 Mini-Base Ports
      • Dimensions
      • System Diagram & Pinout
      • Supported Firmware
      • Download
    • Durandal
      • Overview & Technical Specification
      • Dimensions
      • Durandal Pinout
      • Supported Firmware
    • Kakute H7 (v1/v2/Mini)
      • Kakute H7 v1
        • Overview
        • Wiring Diagram
        • Pinout
        • Supported Firmware
      • Kakute H7 v2
        • Overview
        • Wiring Diagram
        • Pinout
        • Supported Firmware
          • INAV VTX+ & Bluetooth Setup
      • Kakute H7 Mini
        • Overview
        • Sample Wiring Diagram
        • Pinout
        • Supported Firmware
      • Kakute H7 Version Difference
      • Download
    • Kakute H743-Wing
      • Overview
      • Pinout
      • Sample Wiring Diagram
      • Power Monitor & Scale
      • Camera & ON/OFF Pit Switch
      • Ardupilot Mapping
      • Ardupilot Wiki
      • INAV Mapping
      • Supported Firmware
    • Kakute F405 Wing Mini
      • Overview
      • Pinout
      • Sample Wiring Diagram
      • Power Monitor & Scale
      • Supported Firmware
    • Autopilot Comparison
  • GPS & RTK System
    • H-RTK NEO-F9P Series (RM3100 Compass)
      • Overview
      • Specification
      • NEO-F9P Module Pinout
      • NEO-F9P Rover Pinout
      • Dimensions
      • Downloads
      • Setup & Getting Started
      • Firmware Upgrade
      • GPS Heading/Yaw (aka Moving Baseline)
      • Setup guide for Multiple Aircraft
      • Portable RTK Base Station Setup
      • CAN Termination Resistance Software Toggle
    • H-RTK ZED-F9P Series (RM3100 Compass)
      • Overview
      • Specification
      • Dimension
      • Pinout
      • Download
      • Setup & Getting Started (Ardupilot)
      • Setup & Getting Started (PX4)
      • Using with Cube Autopilot
      • u-blox F9P Firmware Upgrade
      • DroneCAN FW Upgrade
      • GPS Heading/Yaw (aka Moving Baseline)
      • Setup guide for Multiple Aircraft
      • Portable RTK Base Station Setup
      • Galileo OSNMA Support
      • Changelog
      • CAN Termination Resistance Software Toggle
    • H-RTK ZED-F9P Series (IST8310/BMM150 Compass)
      • DroneCAN F9P
        • Overview
        • Specification
        • Pinout
        • Dimension
        • Setup & Getting Started
        • DroneCAN FW Upgrade
        • Download
        • CAN Termination Resistance Software Toggle
      • Standard F9P (UART)
        • Overview
        • F9P Rover Lite
        • F9P Helical
        • F9P Base
        • H-RTK with Cube Autopilot
        • Specification & Comparison
        • Setup & Getting Started
        • Dimension
        • Pinout
        • Download
      • u-blox F9P Firmware Upgrade
      • GPS Heading/Yaw (aka Moving Baseline)
      • Setup guide for Multiple Aircraft
      • Ardupilot IST8310 Compass Orientation
      • Portable RTK Base Station Setup
      • Galileo OSNMA Support
    • H-RTK Unicore UM982
      • Overview
      • Specification
      • Pinout
      • Dimension
      • LED Indicator
      • Setup & Getting Started (Ardupilot)
      • Setup & Getting Started (PX4)
      • Advanced Application (Unicore Uprecise)
      • Factory Setting and COM Port Allocation
      • Firmware Support
      • Download
    • H-RTK mosaic-H
      • Overview & Specification
      • Setup & Getting Started (Ardupilot)
      • Setup & Getting Started (PX4)
      • Pinout
      • Dimension
      • Advanced Application
      • GPS LED Meaning
      • Septentrio PPK application
      • Septentrio receiver control and analysis software
      • Supported Firmware
      • Download
    • M8N/M9N/M10 GPS
      • Standard M10/M9N/M8N GPS
        • Overview
        • Pinout
        • Dimension
        • Download
      • Micro M10/M9N GPS
        • Overview
        • Pinout
        • Dimension
        • Download
      • DroneCAN M9N/M8N
        • Overview
        • Pinout
        • Dimension
        • DroneCAN GPS Setup Guide
        • DroneCAN FW Upgrade
        • CAN Termination Resistance Software Toggle
        • About DroneCAN
        • Downloads
      • Ardupilot IST8310 Compass Orientation
      • Downloads
    • GPS LED & Buzzer
      • GPS LED & Buzzer Meaning
      • Status LED Changes
  • Peripherals
    • DLVR Airspeed (DroneCAN)
      • Overview
      • Quick Start Guide
      • CAN Termination Resistance Software Toggle
      • Download
    • MS4525DO & MS5525DSO I2C Airspeed Sensor
    • RM3100 Compass (DroneCAN)
      • RM3100 Setup Guide
      • CAN Termination Resistance Software Toggle
    • H-Flow (DroneCAN)
      • Overview
      • Setup Guide
      • Firmware
      • Dimensions
      • Pinout
      • CAN Termination Resistance Software Toggle
      • Downloads
  • PMW3901 Optical Flow Sensor
  • CAN Termination Resistance Software Toggle
  • Radio
    • Remote ID
      • Overview & Spec
      • Setup & Configuration
      • Pinout
      • Firmware Support
      • Firmware Update
      • Download
    • SiK Telemetry Radio V3
      • LED and Connection
      • Multiple Point to Point Setup with Sik Radio
        • Downloads
      • RF Transmission Power Setting For 1W Variants
      • Flight Controller setup
      • Dimension & Pinout
      • Downloads
    • Microhard Radio
      • Overview
      • Specification
      • Ports & Buttons
      • Status LED
      • Default Setting
      • Pinout
      • Dimension
      • Enabling RTS / CTS Flow Control
      • Point-to-Multipoint Setup with Microhard Radio
      • Download
    • XBP9X Radio
      • Specification
      • Power
      • Status LEDs
      • Antenna
      • Pinout
      • Dimension
      • Point-to-Multipoint Setup with XBee Radio
      • Download
  • Drone Development Kit
    • X650 Development Kit
      • NeoPixel WS2812 LED Setup Instruction
      • Download
    • PX4 Development Kit - X500v2
      • Getting Started Build Guide
      • Download
    • PX4 Vision Dev Kit v1.5
      • Overview
      • Wiring Diagram
      • v1 & v1.5 Difference
      • Up-Core Carrier Board Pinout
      • PX4 User Guide
      • Downloads
    • S500 Frame Kit
  • Power Module & PDB
    • Power Module
      • DroneCAN Power Module Setup
      • Analog Power Module Setup
      • Digital Power Module (PM) Setup
      • PM07 Quick Start Guide
      • Using Analog PM with Pixhawk 5X/6X
      • Connector & Wire Rating
      • Download
    • Power Module Comparison
  • UBEC
  • ESC
    • ESC Current Sensor Scale
    • AM32 ESC - Reverse Motor Direction Instruction
    • How To Flash AM32 Firmware To HOLYBRO BLHeli ESCs
  • ESC 3D File Downloads
  • Company
    • About Us
    • Holybro Logo
    • Certification (ISO, FCC, CE, RoHS, etc):
    • User Manuals
      • Kakute Flight Controller
      • ESC
      • Kopis
      • Autopilot Flight Controller
      • Drone Dev Kit
      • Other
Powered by GitBook

© 2024 Holybro. All rights reserved.

On this page
  • Connection to Autopilot
  • Use as Moving Baseline Yaw Provider (Rover)
  • Parameter Setup
  • Antennas Setup
  • Use as Single Antenna GPS for Vehicle Use
  • RTK correction data injection
  • Safety Switch and LED
  • Advanced Application

Was this helpful?

Export as PDF
  1. GPS & RTK System
  2. H-RTK Unicore UM982

Setup & Getting Started (Ardupilot)

PreviousLED IndicatorNextSetup & Getting Started (PX4)

Last updated 7 months ago

Was this helpful?

Connection to Autopilot

Various JST-GH cables are provided to attach to the UM982 10 pin JST-GH connector. Two are full 10 wire cables (short and long) for connecting to Pixhawk Standard Autopilot’s GPS1 connector, or similar, and provide full functionality including safety switch button and LED.

The 10Pin - 6Pin cable allows users to connect the UM982 to GPS2 port on Cubepilot and Holybro Autopilots.

Use as Moving Baseline Yaw Provider (Rover)

The UM982 primary application is to provide compass-less YAW information to the autopilot (commonly called Moving Baseline Yaw). Using this as a yaw source prevents magnetic interference from the vehicle motors and electrical systems, and any environmental interference sources, such as metallic structures or equipment that can cause incorrect yaw reports to the autopilot. This works even if the GPSs are not receiving RTCM data from a fixed RTK station or NTRIP server (see “RTK correction data injection” section below).

Parameter Setup

The parameters for the serial port that the UM982 is connected to must be setup just like its use as a single antenna GPS in the above section, EXCEPT:

  • Set the GPS_TYPE = 25 (UnicoreMovingBaseline)

  • Set EK3_SRC1_YAW = 2 ("GPS") or 3 ("GPS with Compass Fallback") if a compass(es) is also in the system.

  • EKF3 must be enabled and used. Check that:

    • EKF3_ENABLE = 1 (EKF3 enabled)

    • AHRS_EKF_TYPE = 3 (use EKF3)

Antennas Setup

In addition, both antennas (“Master” and “Slave”) must be attached and positioned at least 30cm apart. The location on the vehicle is flexible but their positions impact several parameters which must be set in order to obtain proper operation. These offset distances in the x/y/z directions must be entered for the following parameters:

  • GPS_MB1_TYPE = 1 (GPS1 Moving Baseline master antenna offsets relative to slave antenna, also enables the next parameters to be shown)

  • GPS_MB1_OFS_X: offset in meters from the "Slave" to "Master" antenna in the X axis (in direction of 0 deg yaw, positive offsets are if "Master" is in front of the "Slave".

  • GPS_MB1_OFS_Y: offset in meters from the "Slave" to "Master" antenna in the Y axis (in direction 90 deg (right) of 0 deg yaw, positive offsets are if "Master" to the right of the "Slave".

  • GPS_MB1_OFS_Z:: offset in meters from the "Slave" to "Master" antenna in the Z axis (in direction up and down, positive offsets are if "Master" below the "Slave".

This figure and photo illustrates these parameters and their settings:

Use as Single Antenna GPS for Vehicle Use

The UM982 can also be used as a typical GPS for a vehicle, using a single antenna connected to the “Master Antenna Connector”.

For autopilots running ArduPilot. The serial port associated with the GPS connector to which the UM982 is attached must be determined from the autopilot’s documentation. For example, the Holybro Pixhawk6 GPS1 port uses SERIAL3, while the Cube Orange’s GPS2 port would be SERIAL4.

For this example will assume that its attached to SERIAL4:

  • Set SERIAL4_PROTOCOL = 5 (GPS)

  • If this is the only GPS in the system, then set GPS_TYPE =24 (Unicore Master), and set SERIAL3_PROTOCOL = -1 to prevent miss-detection of a non-existent GPS

  • If this is the second GPS in the system (one is attached to the first GPS, SERIAL3), then set GPS_TYPE2 = 24, instead of 0 and both SERIAL3_PROTOCOL=5 and SERIAL4_PROTOCOL=5

RTK correction data injection

For RTK Fixed operation with centimeter level accuracy, a source of RTCM correction data must be injected into the UM982 to allow its position reports to the autopilot to be correctly computed.

For ultimate positioning precision in the centimeter ranges, the offset of the "Master" antenna from the vehicle's CG can optionally be entered to compensate for attitude effects on GPS accuracy. The offsets from the CG are entered into:

  • GPS_POS1_X: offset in meters from the Center of Gravity to "Master" antenna in the X axis (in direction of 0 deg yaw, positive offsets are if "Master" is in front of the Center of Gravity.

  • GPS_POS1_Y: offset in meters from the Center of Gravity to "Master" antenna in the Y axis (in direction 90 deg (right) of 0 deg yaw, positive offsets are if "Master" to the right of the Center of Gravity.

  • GPS_POS1_Z: offset in meters from the Center of Gravity to "Master" antenna in the Z axis (in direction up and down, positive offsets are if "Master" below the Center of Gravity.

This photo illustrates these parameters and their settings:

Safety Switch and LED

Advanced Application

For guide on Advanced application with Unicore Uprecise Software, please see link below.

To reset to factory default setting, please see link below

Using ArduPilot, this will be automatically accomplished via Mission Planner Ground Control Station telemetry to the autopilot, using either a fixed base GPS (UM982 can be used in this application, see below), or internet RTCM data via an NTRIP server, if the Mission Planner PC has internet connectivity. For more information on using NTRIP, see the ArduPilot wiki article :

See and LED. These work just like a normal external safety switch for ArduPilot autopilots.

RTK GPS Correction (Fixed Baseline)
ArduPilot Wiki for safety switch
Advanced Application (Unicore Uprecise)
Factory Setting and COM Port Allocation